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Straggling of an extended charge distribution in a partially degenerate plasma
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The straggling of pointlike and extended nonrelativistic charged particles stopped in a partially degen-
erate electron fluid is considered within the random-phase approximation. High- and low-projectile-
velocities V are given specific attention, as well as classical and fully degenerate target plasmas. The
straggling of diclusters randomly orientated with respect to V is also considered.
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I. INTRODUCTION

The stopping of extended charges and cluster of
charges in an arbitrarily degenerate plasma has already
been given recent attention [1] (Ref. [1] is hereafter re-
ferred to as paper I).

This is a topic of obvious significance for a quantitative
understanding of beam-target interaction in the context
of particle driven fusion [2] for instance. So, the present
work is a natural sequel to paper I, where nonrelativistic
ion stopping of extended charges and diclusters in par-
tially degenerate plasmas have been investigated at some
length. Here, we focus attention on the straggling quan-
tity, which allows one to put an estimate on the inherent
uncertainty of the stopping power.

The paper is organized as follows. The random-phase
approximation (RPA) [3,5] formulation for estimating
straggling at any temperature is outlined in Sec. II.

Low-velocity behaviors are detailed in Sec. III and pre-
viously existing limits at high and low temperature are
recovered. Then the RPA dielectric function is ap-
proached through a plasmon-pole expression. One thus
derives analytic expressions for plasmon and binary con-
tributions to the straggling of pointlike and extended
charges (Sec. IV). Section V is devoted to an extension of
these results to dicluster stopping of a pair of randomly
orientated charges.

II. STRAGGLING AT FINITE TEMPERATURE

To start with a fully quantum-mechanical framework,
we implement the dynamical structure formalism [6].

Such an approach essentially relies on calculating the
probability that the ion projectile loses an energy #w in a
time interval d¢. From a functional analysis point of
view, stopping power appears as a first moment in w, and
J
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The dependence on temperature (T dependence) essentially lies in e(k,®) and N(w).

Lindhard variables
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straggling as the second one. This observation makes it
useful to consider the collision cross section

R(q,w)=;—ZIeV(q)le(q,w) , (1)

with impulse transfer #q. #w and #q satisfy
fiw="~q-V+#°q%/2M and V(q)=4mwZeq ~?, for a projec-
tile ion of total charge Z. If the latters corresponds to a
local charge density n(r), fulfilling Z = fd3rn(r), then
V(q) becomes

4 q
V(q)= 7ren2( ) ,
q
n(q) being the n(r) Fourier transform. On the other
hand, the dynamic structure factor S(q,w) is directly

connected to the dielectric function €(q,®) through

()

S(qo) =4 N(o)m |- : 3)
7‘T€2 E(Q,a’)
in terms of the Planck distribution
1
e e — 4
N(w) R @)

For a projectile with mass M >>m,, the recoil energy
#2q°/2M may be neglected. Let us pose ®=q-V.

To simplify further derivations, we restrict from now
to a spherically symmetric n(r)=n(r). A parity argu-
ment also allows one to use N (w)+N(—w)=—1, so that
one gets simultaneously

dE _ 2e* [« dk 2 [V 1

dx V2 fo k In (k)| J.o ©doIm ek,w) |’
(5)

for stopping and

[2N(w)+1], (6)

Introducing the dimensionless
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k [2) 2 1/3 = fikp
Z= R = , kp=(37°N , V=
2%k Y kw0 (m°Ne) F= o,

(N, denotes electron density in number) enables us to rewrite Eq. (6) under the form [y*=arg /7, rg =(4

a=(97/4)" 3

_12 |V AL ) 2
Lo=—5 5 [, widu [T Z%n 2k z)Pim | -
where ‘
NZu)=[e"Te—1771 . ®)

The discussion developed in paper I for the critical dis-
tances of a given system of charges applies here again.
So, the maximum size that a charge may have and be still
taken pointlike with respect to the straggling effect is
#i/2m,(V+V,). V, is the average target electron veloci-
ty.

On the other hand, there exists a minimum distance
between two charges, so that dicluster straggling appears
as a sum of two one-particle straggling. It is given either
by the plasma static screening length at low velocity
(V <<¥,), or the dynamic screening length ¥ /w, at high
veloc1ty (V>>V,). o, denotes electron plasma frequency
(4N, e?/m )2

III. LOW-VELOCITY BEHAVIORS

The integrand in Eq. (6) is essentially nonvanishing for
fiw <<kpT, with [2N(w)+1]=2k, T /#io.

Straggling (6) thus reproduces the well-known approxi-
mation

dE

Q2=2kp, T— ,

BT dx
valid at low velocity, and often used in diagnostics of
tokamak plasmas. Former studies [1] of the dielectric

function show that in Eq. (7), the largest Z value is
J
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where
of, .
2 T S _
W Jymo 2 |, @01’ v=Bu . (15)
When T—0, N—0, Eq. (14) yields the limit
2 4 2
Z4n(2k,Z)|?dZ
LQ,_ =2 |1 [r 2k e
2 | Ve | Yo [Z24x%f1(Z,0)]

quadratic in ¥, while the classical limit [Eq. (9)] is linear
in V.

IV. HIGH VELOCITY

To ease technical manipulations, we shall restrict the
discussion to a plasmon-pole approximation in space
(Z,u) of the Lindhard variables [5].

af,
ou

,n_Ne)Al/3a071’

1

m [2N(z,u H—l]dz

Z,=V/Vip+V,/Vg. Equation (9) is then valid for

T kgT
4Z —<<T——— or 2V(V+V,) << ,
"y Tg ¢ m
F e

which yields

Ve
2

with the classical limit (kz T~ 1m, V?)

172

2k, T |

2
m, Ve

1+

V <<0.205V, , (11)
and the opposite degenerate limit (k5 T << 1m,V?)

V<<

T
V,, 12
4T, ¢ (12)
making it clear that approximation (9) is indeed useless
for a fully degenerate target. So, the case 7=0 should be
treated separately. This is achieved through a limited ex-
pansion of Eq. (7) around u =0.

Returning to the dielectric function expression
e(k,0)=1—-V(k)X’k,0), (13)

explained later on in dlmensionless form with

W =arsg/m, r¢=(4wN,)"3ag ! and a=(97w/4)"'/3].

At any temperature, in the low-velocity limit, one gets

[2N(Z,u)+1]du , (14)

u=0

[
Let us recall the dispersion relation for the resonant

part

and the sum rule
1 2

- |=T7X
e(Z,u)

VAR

fowudu Im (18)

Restricting in plane (Z,u) to the above resonance curve
and the line Z =u, while retaining a balance between col-
lective and binary collision contribution through the sum
rule (18), provides us with a plasmon-pole approximation

(7]
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. 1
e(Z,u)
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X
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I

Im Y(Z,—Z)

+8(Z—u)Y(Z—Zl)] ,

(19)

in terms of the Heaviside function Y(x) and delta func-

tion 8(x). Z, refers to the highest Z, value at finite tem-
perature, so
V.
— X —_e
' V34,(T,) R

A. Pointlike charges

According to Eq. (19), let us split Eq. (7) into a
plasmon part and a binary collisions one, so that

2
_2Z% | Vr |14
LQP13_7§_ 7 In T/e— [2N(cop+1)], (20a)
2 2 2 2
Vi |4 Z e F
—2 | F LA Rt § 2 £
LO =Z % v, > +Z > % A,
(20b)
_ 2
where A=In[(1—e 2meV/kBT)/(l-—e_CZ)], N is the
Planck function (4), while
fiw kpT
= | | @
2kBT é‘meVe

qualifies the 7 behavior. When C -, T-correcting
terms turn negligible. Condition C =1 yields, respective-
ly, a classical limit (m,V2=2k,T)

_ loglo(Ne )

loglo(kBT)'— —6.66

and a degenerate one (V,=V})
kg T=0.3664Ne?

identical to the line Apgye =Rpangay With Apepye
=(kpT /47N,e®)""? and R pgan =€*/kpT.

C=1 is drawn in diagram (7,N,) in Fig. 1 as a thick
line. Within the RPA domain, classical plasmas are lo-
cated in a region fulfilling C <<1. On the other hand,
most of quantum plasmas fulfill C >>1. There exists also
a domain where T<Tr and C <1 are simultaneously
fulfilled. Regrouping altogether the two contributions
(20) yields the asymptotic expansion
2

_ 2,22 | VF v
LO=Z+ | v
X {[2N(w,)+1]+0(V ™)} . 22)

The first term in the right-hand side represents close
collisions contribution at 7'=0, with practically no T

kgT = ﬂ1ec2

Plasma R.P.A
€ Ap=RiaaauandT>Tg

T(K)

kgTg = myc?

20 22 24 28 30

Ng (cm3)

FIG. 1. Plane density temperature with temperature parame-
ter C [Eq. (21)], line Ap =Ry ,n4au, and domains of various ap-
proximations.

correction. On the other hand, T corrections to plasmon
straggling turn as large as the T'=0 quantity itself.

B. Extended charge straggling

The low-velocity situation has already been addressed
in Sec. III. So, we now concentrate on a projectile with a
velocity V' >>V,. Through Eq. (19), one can establish the
respective extended charge contributions,

2 2
_2x | Fr z, |n(2kpZ)|
LQ;’,‘;—‘/—E 7 [2N(a>p)+1]fzo —,—dz
(23)
and
2 v
Lox=2|-~L " ZIn(2kp2)?
coll vV le I F |
2
X 1+—————\dZ, (24)
4z%/T
e c—1
where Zo=xVy/V3V and Z,=(x/V3) A4,.
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FIG. 2. Ratio of correlated to pointlike straggling Q2 /. Qf, at
high projectile velocity [Egs. (27) and (28)].
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V. DICLUSTER STOPPING

Let us consider a pair of charges Z,e and Z,e located
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in Eq. (6), so that

at a relative distance R. Taking averages over all relative 2 (72 212 2
orientations, one is led to introduce [8,9] W =(27+23)0,+22,2,Q. (26)
272 2 SinkR
|n(k)|*=Z1+25+2Z,Z, R’ (25) with
J
2e? o dk kv 1
Q= - Im |— 2N(w)+1], 27
= S5 [ dotiie) ml ) |EN@+L 27)
and
5 2e? o dk sin(kR) kv ) 1
= —_—— - 2N(w)+1 28
¢ nhV? fo k kR fo do(fiw)Im elk,w) [2N(@)+1] @8

for pointlike and correlated contributions, respectively.

A. High velocity

In the high-velocity regime, Egs. (23)-(24) become [sincx =(sinx )/x ]

2

: 2
a2x | Vr z, |sinc(2kzRZ)|
LQ;I;—“;:?;‘ 7 [2N(wp)+1]f20 #dz
and (29)
2
Vv,
t—n | JF F o 2
LOgh=2 | le Z sinc(2kRZ) |1+ i dzZ .
The plasmon part is explained with
H(x)=Ci(x)— 2% |
x
where Ci(x) is the integral cosine, as
2
xt_ 2X F R
LQ;;—?? 7 [2N(cop)+1][2N(wp)+1] H ]—H E (30a)
Ag is the appropriate screening length pertaining to a given plasma degeneracy. The collisional part is expressed by
5| cos | — cos |[—=— s
1% As R, T, ~2mV2/kgTP? g
Logy=2 |- = — . <= > sinlaRu) 2u du (30b)
14 (2kgR) (2kpR) v 2 aRu  ,u’_4
[
with Ry=#/2m,V. C is defined by Eq. (21) and 2 R V)2
a=T} "k, Lo 2X | TF [2N(cup)+1]COS( w,/V)
The second term in the right-hand side of Eq. (30b) ac- ViV (R, /V)

counts for T corrections of the correlated contribution to
the straggling.

In the high-velocity limit ¥V >>V,, the upper limit of
the quadrature may be taken as infinity, up to a very
good approximation. For C > 1, the corresponding con-
tribution is ~e~C’. When C <<1, the given term be-
comes a constant ~In(C).

The corresponding straggling contribution remains
negligible compared to the close collisions one at 7=0.

When R >>w, /V, one witnesses L Qgy); << L Qg};, and

(31)
The ratio Q2 /Qf, of Eq. (27) to Eq. (28) is shown in Fig
2.
B. Low velocity and T=0

Let us rewrite Eq. (16) with |n(2k.Z)|>=sinkR /kR
and evaluate the quadrature
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FIG. 3. Function H(x) [Eq. (34)].

Z%inc(2kzRZ)
Lc(QT_O):l v fl S £ >dZ , (32)
2 | Vp 0 [Z*+x"f1(Z,0)]
where
_1 1—-22 | Z+1
f1<z,0)—2 1+ T In 71 ]

is the Lindhard function. Equation (32) may be worked
out to display a small R <<k ! interparticle limit with
2

L(Q;=0)=L,(Q;=0)—(k;R? |— | H(x?), (33)
F
with
Z%Z
Hiy)=["' : (34)
O fo [Z2+x2f1(Z,0)

graphed in Fig. 3. Here we restrict to y? << 1, so we have
H(x*)= 1
For large interparticle distances, fulfilling R >>kj !,
one gets through an integration by parts,
3 v ]*cos(2kgR)

L (Qr—p)= 7F (2kyR )’

2

2 > (3 5)

2
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FIG. 4. Ratio of correlated to pointlike straggling

L.(Q7—0)/L,(Q7=0) [Eq. (32)] in the low-velocity regime.

which exhibits Friedel oscillations at R — .

The ratio L (Q7-¢)/L,(Qr—() derived from Eq. (32)
with L (Q;~,) obtained by putting sinc(2kzRZ)=1, is
given on Fig. 4.

VI. CONCLUSIONS

We made use of the Born random-phase approximation
[1,4,10] to investigate straggling of projectiles with point-
like and extended charges. Plasmon and binary collisions
contributions have been given analytic expressions
through a plasmon-pole approximation to the RPA
dielectric function. Specific behaviors at high and low
temperature are given analytic expressions. Diclusters
randomly orientated with respect to projectile velocity
have also been given a detailed treatment, which paves
the way to further application in the field of particle-
driven fusion.

ACKNOWLEDGMENTS

The Laboratoire de Physique des Gaz et des Plasmas is
associé au CNRS.

[1] A. Bret and C. Deutsch, Phys. Rev. E 47, 1276 (1993).

[2] C. Deutsch, Ann. Phys. (Paris) 1, 111 (1986); Laser Part.
Beams 2, 449 (1984).

[3] P. Nozieres, Le Probleme A N Corps (Dunod, Paris, 1964).

[4] D. Pines and P. Nozieres, The Theory of Quantum Liquids
(Benjamin, New York, 1966).

[517. K. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.
28, No. 8 (1964).

[6] N. R. Arista and W. Brandt, Phys. Rev. A 23, 1898 (1981).

[71 G. Basbas and R. H. Ritchie, Phys. Rev. A 25, 1943
(1982).

[8] N. Arista, Phys. Rev. B 18, 1 (1978).

[9]1 1. Abril, M. Vicanek, A. Gras-Marti, and N. R. Arista,
Nucl. Instrum. Methods Phys. Res., Sect. B 67, 56 (1992).

[10] G. Maynard and C. Deutsch, J. Phys. (Paris) 46, 1113

(1985).



